D. CONCRETE
 SNOW LOADS: 43 PSF (GROUND)
 SEISMIC LOADS:

 GRADE SHALL BE BY OTHERS.

 WATER PROOFING AS MAY BE REQUIRED AT SOIL FACE OF WALLS BELOW
 PROPERLY BACKFILLED AND COMPACTED.

 FOUNDATIONS DESIGNED PER RECOMMENDATIONS BY EARTHTEC ENGINEERING,
 ALL INSPECTIONS REQUIRED BY THE BUILDING CODES, JURISDICTION, OR THESE
 CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR
 CIRCUMSTANCES BY REPUTABLE STRUCTURAL ENGINEERS IN THIS OR SIMILAR
 CUBIC FOOT USING AGGREGATES CONFORMING TO ASTM C330.

 STANDARDS AND CODE REFERENCES NOTED IN THESE CONSTRUCTION
 NOTES AND DETAILS ON DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL
 DESIGN OF ITEMS NOT PART OF THE PRIMARY STRUCTURAL SYSTEM (SUCH AS
 FLOOR, ROOF TRUSSES) SHALL BE PROVIDED BY OTHERS UNLESS
 REQUIREMENTS.

 INSPECTION.

 MAXIMUM SLUMP SHALL BE 5 INCHES (EXCEPTION: WHERE ADMIXTURES/PLASTICIZERS
 HAVE BEEN APPROVED FOR SLAB CURING, CONTRACTOR SHALL BE RESPONSIBLE
 LAP VERT. REINF.

 CONTROL JOINTS. REFER TO PLAN FOR TYPICAL WALL VERT. REINF. SIZE AND
 WHERE NO DETAILS ARE SHOWN,
 REQUIREMENTS.

 ITEMS (SUCH AS FLOOR, ROOF TRUSSES) SHALL BE PROVIDED BY OTHERS UNLESS
 ippi: BLOCK: GROUT: MORTAR: MORTAR TYPE:

 MECH., ELECT., AND PLUMBING PENETRATIONS THRU MASONRY SHALL COMPLY
 WRITE MECHANICAL, ELECTRICAL, AND PLUMBING DETAILS TO THE ARCHITECT.

 ACCESSORIES INCLUDING TRACKS, WEB STIFFENERS, BLOCKING, LINTELS, CLIP
 STRUCTURAL MEMBERS” BY AISI.

 ATTACHMENT AND THICKNESS SHALL BE THE SAME
 THE PLYWOOD IT REPLACES. ATTACHMENT AND THICKNESS SHALL BE THE SAME
 (INCLUDING SLABS ON GRADE)

 PRECAST CONCRETE MANUFACTURED UNDER PLANT CONTROL CONDITIONS

 MECHANICAL, ELECTRICAL, AND PLUMBING PENETRATIONS THRU MASONRY SHALL COMPLY

 FASTENING OF COMPONENTS SHALL BE WITH SELF-TAPPING SCREWS OR WELDS.

 ALL REINFORCING SHALL BE BENT COLD. BARS SHALL NOT BE UN-BENT AND

 TYPICAL REBAR LAP SCHEDULE OR 24" MIN. PAST EDGES OF OPENING U.N.O.

 SLABS ON GRADE DETAIL FOR SIZE,

 SHALL BE FIBERMESH 650 BY PROPEX CONCRETE SYSTEMS OR TUF-STRAND SF BY

 CONSTRUCTION TECHNOLOGIES (800-542-0214) OR OTHER MFR. APPROVED BY

 WRITTEN APPROVAL OF ENGINEER THRU THE ARCHITECT.

 MECH., ELECT., AND PLUMBING PENETRATIONS THRU MASONRY SHALL COMPLY

 CONSTRUCTION TECHNOLOGIES (800-542-0214) OR OTHER MFR. APPROVED BY

 DESIGNATION.

 ATTACHMENT AND THICKNESS SHALL BE THE SAME

 THE PLYWOOD IT REPLACES. ATTACHMENT AND THICKNESS SHALL BE THE SAME

 (INCLUDING SLABS ON GRADE)

 PRECAST CONCRETE MANUFACTURED UNDER PLANT CONTROL CONDITIONS

 MECHANICAL, ELECTRICAL, AND PLUMBING PENETRATIONS THRU MASONRY SHALL COMPLY

 FASTENING OF COMPONENTS SHALL BE WITH SELF-TAPPING SCREWS OR WELDS.

 ALL REINFORCING SHALL BE BENT COLD. BARS SHALL NOT BE UN-BENT AND

 TYPICAL REBAR LAP SCHEDULE OR 24" MIN. PAST EDGES OF OPENING U.N.O.

 SLABS ON GRADE DETAIL FOR SIZE,

 SHALL BE FIBERMESH 650 BY PROPEX CONCRETE SYSTEMS OR TUF-STRAND SF BY

 CONSTRUCTION TECHNOLOGIES (800-542-0214) OR OTHER MFR. APPROVED BY

 WRITTEN APPROVAL OF ENGINEER THRU THE ARCHITECT.

 MECH., ELECT., AND PLUMBING PENETRATIONS THRU MASONRY SHALL COMPLY

 CONSTRUCTION TECHNOLOGIES (800-542-0214) OR OTHER MFR. APPROVED BY

 WRITTEN APPROVAL OF ENGINEER THRU THE ARCHITECT.

 MECH., ELECT., AND PLUMBING PENETRATIONS THRU MASONRY SHALL COMPLY

 FASTENING OF COMPONENTS SHALL BE WITH SELF-TAPPING SCREWS OR WELDS.

 ALL REINFORCING SHALL BE BENT COLD. BARS SHALL NOT BE UN-BENT AND

 TYPICAL REBAR LAP SCHEDULE OR 24" MIN. PAST EDGES OF OPENING U.N.O.

 SLABS ON GRADE DETAIL FOR SIZE,

 SHALL BE FIBERMESH 650 BY PROPEX CONCRETE SYSTEMS OR TUF-STRAND SF BY

 CONSTRUCTION TECHNOLOGIES (800-542-0214) OR OTHER MFR. APPROVED BY

 WRITTEN APPROVAL OF ENGINEER THRU THE ARCHITECT.

 MECH., ELECT., AND PLUMBING PENETRATIONS THRU MASONRY SHALL COMPLY

 CONSTRUCTION TECHNOLOGIES (800-542-0214) OR OTHER MFR. APPROVED BY

 WRITTEN APPROVAL OF ENGINEER THRU THE ARCHITECT.

 MECH., ELECT., AND PLUMBING PENETRATIONS THRU MASONRY SHALL COMPLY

 FASTENING OF COMPONENTS SHALL BE WITH SELF-TAPPING SCREWS OR WELDS.

 ALL REINFORCING SHALL BE BENT COLD. BARS SHALL NOT BE UN-BENT AND

 TYPICAL REBAR LAP SCHEDULE OR 24" MIN. PAST EDGES OF OPENING U.N.O.

 SLABS ON GRADE DETAIL FOR SIZE,

 SHALL BE FIBERMESH 650 BY PROPEX CONCRETE SYSTEMS OR TUF-STRAND SF BY

 CONSTRUCTION TECHNOLOGIES (800-542-0214) OR OTHER MFR. APPROVED BY

 WRITTEN APPROVAL OF ENGINEER THRU THE ARCHITECT.

 MECH., ELECT., AND PLUMBING PENETRATIONS THRU MASONRY SHALL COMPLY

 CONSTRUCTION TECHNOLOGIES (800-542-0214) OR OTHER MFR. APPROVED BY

 WRITTEN APPROVAL OF ENGINEER THRU THE ARCHITECT.

 MECH., ELECT., AND PLUMBING PENETRATIONS THRU MASONRY SHALL COMPLY

 FASTENING OF COMPONENTS SHALL BE WITH SELF-TAPPING SCREWS OR WELDS.

 ALL REINFORCING SHALL BE BENT COLD. BARS SHALL NOT BE UN-BENT AND

 TYPICAL REBAR LAP SCHEDULE OR 24" MIN. PAST EDGES OF OPENING U.N.O.

 SLABS ON GRADE DETAIL FOR SIZE,

 SHALL BE FIBERMESH 650 BY PROPEX CONCRETE SYSTEMS OR TUF-STRAND SF BY

 CONSTRUCTION TECHNOLOGIES (800-542-0214) OR OTHER MFR. APPROVED BY

 WRITTEN APPROVAL OF ENGINEER THRU THE ARCHITECT.

 MECH., ELECT., AND PLUMBING PENETRATIONS THRU MASONRY SHALL COMPLY

 CONSTRUCTION TECHNOLOGIES (800-542-0214) OR OTHER MFR. APPROVED BY

 WRITTEN APPROVAL OF ENGINEER THRU THE ARCHITECT.

 MECH., ELECT., AND PLUMBING PENETRATIONS THRU MASONRY SHALL COMPLY

 FASTENING OF COMPONENTS SHALL BE WITH SELF-TAPPING SCREWS OR WELDS.

 ALL REINFORCING SHALL BE BENT COLD. BARS SHALL NOT BE UN-BENT AND
1. ALL WELDING SHALL USE PREQUALIFIED MATCHING FILLER METALS PER AWS D1.1, THE ENGINEER THROUGH THE ARCHITECT. DECK STEEL SHALL BE GALVANIZED IF WELDS SHALL BE SEQUENCED TO MINIMIZE RESIDUAL STRESS DUE TO WELDING. WELDING SHALL BE PERFORMED IN ACCORDANCE WITH A WELDING PROCEDURE SPECIFICATIONS (WPSs) AVAILABLE UPON REQUEST.

HILTI HY-70 (ICC ESR-2682) OR DEWALT/POWERS AC100+GOLD (ICC ESR-3200) U.N.O.

HARDENED WASHERS.

EXCLUDED FROM SHEAR PLANE (TYPE "X" CONNECTION) U.N.O. HIGH-STRENGTH BARS AND STRUCTURAL STEEL MAY BE 70 KSI).

2. REINFORCING BAR WELDING: - -

A. VERIFY WELDABILITY OF REINFORCING BARS OTHER THAN ASTM A706

B. GRADE TYPE, AND SIZE OF REINFORCEMENT AND OTHER FASTENER COMPONENTS - X

C. ADHESIVE ANCHORS INSTALLED IN HORIZONTALLY (EXCEPT FOR ANCHORS IN A SLAB-ON-GRADE) OR UPWARDLY INCLINED SHALL BE INSTALLED BY PERSONNEL OBSERVED AND DOCUMENTED FOR FASTENER INSPECTION TASKS AFTER BOLTING CONTINUOUS PERIODIC INSTRUCTIONS (MPII). AT THE TIME OF INSTALLATION, THE CONCRETE SHALL HAVE A MINIMUM AGE OF 28 DAYS, BE DRY, AND BE BETWEEN 50 DEGREES F TO 70 DEGREES F

D. PRESTRESSING TENDONS, AND PLACEMENT - X

E. SUSTAINED TENSION LOADS.

F. PLACEMENT OF GROUT AND PRESTRESSING GROUT COMPLETE AND PARTIAL PENETRATION WELDS X -

G. CHECKING WELD EQUIPMENT - X

H. WELDERS QUALIFICATION X -

I. MATERIALS AND WORKSHOP QUALIFICATION X -

J. QUALITY CONTROL MEASURES X -

K. RECORDS AND REPORTS X -

L. PARTIAL PENETRATION WELDS X -

M. UNDERCUT X -

N. POROSITY X -

O. CRACK PROHIBITION

1. EACH PASS MEETS QUALITY REQUIREMENTS X -

2. WIND SPEEDS WITHIN LIMITS

3. PACKAGING

4. TRAVEL SPEED

5. ORGANIC SUBLIMED TARTARIC ACID WELDING SHIELDING GAS

6. GAS FLOW RATE

7. SHIELDING GAS TYPE

8. CLEANLINESS (CONDITION OF STEEL SURFACES)

9. UNDERCUT

10. POROSITY

11. CRACK PROHIBITION

12. EACH PASS MEETS QUALITY REQUIREMENTS

13. WIND SPEEDS WITHIN LIMITS

14. PACKAGING

15. TRAVEL SPEED

16. ORGANIC SUBLIMED TARTARIC ACID WELDING SHIELDING GAS

17. GAS FLOW RATE

18. SHIELDING GAS TYPE

3. PRIOR TO GROUTING, THE FOLLOWING SHALL BE VERIFIED

A. PROPORTIONS OF SITE-PREPARED MORTAR.

B. GRADE TYPE, AND SIZE OF REINFORCEMENT AND OTHER FASTENER COMPONENTS - X

C. LOCATION OF EQUIPMENT WITH ARCH'L., MECH., ELECT., AND PLUMBING DRAWINGS.

D. MULTIPLE BOLTING LOCATION IS CORRECT AND MEETS THE REQUIREMENTS - X

E. BOULDERS, ROCKS, SEDIMENT, AND DIRT WILL BE REMOVED OR BEING REMOVED.

F. PLACEMENT OF GROUT AND PRESTRESSING GROUT COMPLETE AND PARTIAL PENETRATION WELDS - X

G. CHECKING WELD EQUIPMENT - X

H. WELDERS QUALIFICATION - X

I. MATERIALS AND WORKSHOP QUALIFICATION - X

J. QUALITY CONTROL MEASURES - X

K. RECORDS AND REPORTS - X

L. PARTIAL PENETRATION WELDS - X

M. UNDERCUT - X

N. POROSITY - X

O. CRACK PROHIBITION

1. EACH PASS MEETS QUALITY REQUIREMENTS - X

2. WIND SPEEDS WITHIN LIMITS

3. PACKAGING

4. TRAVEL SPEED

5. ORGANIC SUBLIMED TARTARIC ACID WELDING SHIELDING GAS

6. GAS FLOW RATE

7. SHIELDING GAS TYPE

4. Inspectors shall be present at the time of the inspection. All required inspections shall be signed by the inspector. Inspectors shall be members of the American Institute of Steel Construction (AISC)

5. SPECIAL INSPECTION (CONT'D)

N. SPECIAL INSPECTION (CONT'D)

6. SPECIAL INSPECTION (CONT'D)

6. SPECIAL INSPECTION (CONT'D)

7. SPECIAL INSPECTION (CONT'D)

8. SPECIAL INSPECTION (CONT'D)

9. SPECIAL INSPECTION (CONT'D)

10. SPECIAL INSPECTION (CONT'D)

11. SPECIAL INSPECTION (CONT'D)
1. Header per Plan or Schedule
2. Alternate to header location where noted on plan or detail
3. Bottom track per Plan
4. Top track per Plan
5. Refer to typical header to jamb connection detail for attachment
6. Open
7. Open
8. (2) #8 screws sill track to stud
9. (2) #10 screws top and bottom track to stud
10. 1 1/2" x 1 1/2" x 54 MIL (16 GA.) x 3 1/2" long clip w/ (2) #10 screws to sill track and stud
11. 1 3/4" x 3 punch in stud web. Bend flap to attach to CRC
12. (2) #4 cont. 2" from top and at mid-height
13. All rebar lap lengths per schedule, U.N.O.
14. 6'-0" max. 2'-3" min.
15. 1/2"
16. 23-162118 NO SCALE
17. BOTTOM TRACK ANCHORAGE
18. Base track per G.S.N.
19. Bottom track per Foundation Flange Notes
20. 3 1/2" x 2 1/2" x cont. cold rolled channel (CRC)
21. 1 3/4" x 3 punch in stud web. Bend flap to attach to CRC
22. (2) #10 screws at each stud web
23. 1 1/2" x 2 1/2" x cont. cold rolled channel (CRC)
24. 1 3/4" x 3 punch in stud web. Bend flap to attach to CRC
25. (2) #10 screws at each stud web
26. TYPICAL TRASH ENCLOSURE
27. 12" min. thickness
28. #4 vert. at 32" o.c. Alternate bends in footing
29. Adjacent finish grade or slab on grade as occurs
30. (2) #4 cont.
31. See plan or G.S.N. for minimum embedment
32. 8" C.M.U.
33. #4 cont. 2" from top and at mid-height
34. GROUT MASONRY WALL SOLID
35. ALL MEMBER LAP LENGTHS PER SCHEDULE, U.N.O.
MEZZANINE FRAMING PLAN KEYNOTES

- 1200S200-97 CFS 30 JOISTS AT 16" o.c.

FRAMING PLAN NOTES

- SHEATHE SHEAR WALL w/ 7/16" PLYWOOD MIN.
- ATTACH PLYWOOD TO STUDS w/ #8 SCREWS AT 6" o.c. EDGE AND 12" o.c. FIELD

LEDGER PER FRAMING PLAN NOTES

SEE SHEET S006 FOR NOTES AND SCHEDULES
104 STEEL COLUMN AT FOOTING

- BASE PLATE w/ REINFORCING BARS PER PLAN
- SEE PLAN FOR REINFORCING BARS PER COLUMN
- REINFORCING BARS CONFORM TO COLUMN SCHEDULE
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- INSERT REINFORCING BARS IN COLUMN
- LOBE SHOWN BUT NOT NOTED
- AMB. SHEET 3 FOR MORE INFO
- 4. SEE DETAIL 3 FOR MORE INFO

105 STEEL COLUMN AT CONCRETE FOOTING

- CONCRETE SLAB PER PLAN
- SEE PLAN FOR DETAIL
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- REINFORCING BARS CONFORM TO COLUMN SCHEDULE
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- INSERT REINFORCING BARS IN COLUMN
- LOBE SHOWN BUT NOT NOTED
- AMB. SHEET 3 FOR MORE INFO
- 4. SEE DETAIL 3 FOR MORE INFO

106 BUS LIFT AT FLOOR SLAB

- BUS LIFT AT FLOOR SLAB
- SEE PLAN FOR DETAIL
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- REINFORCING BARS CONFORM TO COLUMN SCHEDULE
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- INSERT REINFORCING BARS IN COLUMN
- LOBE SHOWN BUT NOT NOTED
- AMB. SHEET 3 FOR MORE INFO
- 4. SEE DETAIL 3 FOR MORE INFO

107 INTERIOR CFS STUD WALL AT FOOTING

- CFS STUD WALL AT FOOTING
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- REINFORCING BARS CONFORM TO COLUMN SCHEDULE
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- INSERT REINFORCING BARS IN COLUMN
- LOBE SHOWN BUT NOT NOTED
- AMB. SHEET 3 FOR MORE INFO
- 4. SEE DETAIL 3 FOR MORE INFO

108 CURB AT SLAB-ON-GRADE

- CURB AT SLAB-ON-GRADE
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- REINFORCING BARS CONFORM TO COLUMN SCHEDULE
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- INSERT REINFORCING BARS IN COLUMN
- LOBE SHOWN BUT NOT NOTED
- AMB. SHEET 3 FOR MORE INFO
- 4. SEE DETAIL 3 FOR MORE INFO

109 FRENCH CURB

- FRENCH CURB
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- REINFORCING BARS CONFORM TO COLUMN SCHEDULE
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- INSERT REINFORCING BARS IN COLUMN
- LOBE SHOWN BUT NOT NOTED
- AMB. SHEET 3 FOR MORE INFO
- 4. SEE DETAIL 3 FOR MORE INFO

103 TYPICAL DEPRESSED EDGE OF SLAB

- TYPICAL DEPRESSED EDGE OF SLAB
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- REINFORCING BARS CONFORM TO COLUMN SCHEDULE
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- INSERT REINFORCING BARS IN COLUMN
- LOBE SHOWN BUT NOT NOTED
- AMB. SHEET 3 FOR MORE INFO
- 4. SEE DETAIL 3 FOR MORE INFO

101 MASSEY WALL AT CONCRETE FOUNDATION AND FOOTING

- MASSEY WALL AT CONCRETE FOUNDATION AND FOOTING
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- REINFORCING BARS CONFORM TO COLUMN SCHEDULE
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- INSERT REINFORCING BARS IN COLUMN
- LOBE SHOWN BUT NOT NOTED
- AMB. SHEET 3 FOR MORE INFO
- 4. SEE DETAIL 3 FOR MORE INFO

102 INTERIOR MASSEY WALL AT FOOTING

- INTERIOR MASSEY WALL AT FOOTING
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- REINFORCING BARS CONFORM TO COLUMN SCHEDULE
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- INSERT REINFORCING BARS IN COLUMN
- LOBE SHOWN BUT NOT NOTED
- AMB. SHEET 3 FOR MORE INFO
- 4. SEE DETAIL 3 FOR MORE INFO

101 MASSEY WALL AT CONCRETE FOUNDATION AND FOOTING

- MASSEY WALL AT CONCRETE FOUNDATION AND FOOTING
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- REINFORCING BARS CONFORM TO COLUMN SCHEDULE
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- INSERT REINFORCING BARS IN COLUMN
- LOBE SHOWN BUT NOT NOTED
- AMB. SHEET 3 FOR MORE INFO
- 4. SEE DETAIL 3 FOR MORE INFO

102 INTERIOR MASSEY WALL AT FOOTING

- INTERIOR MASSEY WALL AT FOOTING
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- REINFORCING BARS CONFORM TO COLUMN SCHEDULE
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- INSERT REINFORCING BARS IN COLUMN
- LOBE SHOWN BUT NOT NOTED
- AMB. SHEET 3 FOR MORE INFO
- 4. SEE DETAIL 3 FOR MORE INFO

103 TYPICAL DEPRESSED EDGE OF SLAB

- TYPICAL DEPRESSED EDGE OF SLAB
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- REINFORCING BARS CONFORM TO COLUMN SCHEDULE
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- INSERT REINFORCING BARS IN COLUMN
- LOBE SHOWN BUT NOT NOTED
- AMB. SHEET 3 FOR MORE INFO
- 4. SEE DETAIL 3 FOR MORE INFO

101 MASSEY WALL AT CONCRETE FOUNDATION AND FOOTING

- MASSEY WALL AT CONCRETE FOUNDATION AND FOOTING
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- REINFORCING BARS CONFORM TO COLUMN SCHEDULE
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- INSERT REINFORCING BARS IN COLUMN
- LOBE SHOWN BUT NOT NOTED
- AMB. SHEET 3 FOR MORE INFO
- 4. SEE DETAIL 3 FOR MORE INFO

102 INTERIOR MASSEY WALL AT FOOTING

- INTERIOR MASSEY WALL AT FOOTING
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- REINFORCING BARS CONFORM TO COLUMN SCHEDULE
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- INSERT REINFORCING BARS IN COLUMN
- LOBE SHOWN BUT NOT NOTED
- AMB. SHEET 3 FOR MORE INFO
- 4. SEE DETAIL 3 FOR MORE INFO

103 TYPICAL DEPRESSED EDGE OF SLAB

- TYPICAL DEPRESSED EDGE OF SLAB
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- REINFORCING BARS CONFORM TO COLUMN SCHEDULE
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- INSERT REINFORCING BARS IN COLUMN
- LOBE SHOWN BUT NOT NOTED
- AMB. SHEET 3 FOR MORE INFO
- 4. SEE DETAIL 3 FOR MORE INFO

101 MASSEY WALL AT CONCRETE FOUNDATION AND FOOTING

- MASSEY WALL AT CONCRETE FOUNDATION AND FOOTING
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- REINFORCING BARS CONFORM TO COLUMN SCHEDULE
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- INSERT REINFORCING BARS IN COLUMN
- LOBE SHOWN BUT NOT NOTED
- AMB. SHEET 3 FOR MORE INFO
- 4. SEE DETAIL 3 FOR MORE INFO

102 INTERIOR MASSEY WALL AT FOOTING

- INTERIOR MASSEY WALL AT FOOTING
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- REINFORCING BARS CONFORM TO COLUMN SCHEDULE
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- INSERT REINFORCING BARS IN COLUMN
- LOBE SHOWN BUT NOT NOTED
- AMB. SHEET 3 FOR MORE INFO
- 4. SEE DETAIL 3 FOR MORE INFO

103 TYPICAL DEPRESSED EDGE OF SLAB

- TYPICAL DEPRESSED EDGE OF SLAB
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- REINFORCING BARS CONFORM TO COLUMN SCHEDULE
- BASE PLATE w/ REINFORCING BARS PER COLUMN
- INSERT REINFORCING BARS IN COLUMN
- LOBE SHOWN BUT NOT NOTED
- AMB. SHEET 3 FOR MORE INFO
- 4. SEE DETAIL 3 FOR MORE INFO
212 SHEARWALL END STUDS AT MASONRY WALL

208 LIGHT GAGE STEEL JOIST AT MASONRY WALL

204 STEEL JOIST GIRDERS AT STEEL COLUMN

201 STEEL DECK AT MASONRY WALL

209 PARALLEL JOIST AT STEEL STUD WALL

205 STEEL JOIST AT STEEL COLUMN

202 STEEL JOIST AT MASONRY WALL

210 STEEL JOIST GIRDERS AT MASONRY WALL

206 STEEL BEAM AT STEEL COLUMN

203 STEEL JOISTS AT STEEL JOIST GRIDER

211 SHEARWALL END STUDS AT STEEL COLUMN

207 STEEL JOISTS AT STUD WALL

201 SHEARWALL END STUDS AT MASONRY WALL

204 STEEL JOIST GIRDERS AT STEEL COLUMN

201 STEEL DECK AT MASONRY WALL

209 PARALLEL JOIST AT STEEL STUD WALL

205 STEEL JOIST AT STEEL COLUMN

202 STEEL JOIST AT MASONRY WALL

210 STEEL JOIST GIRDERS AT MASONRY WALL

206 STEEL BEAM AT STEEL COLUMN

203 STEEL JOISTS AT STEEL JOIST GRIDER

211 SHEARWALL END STUDS AT STEEL COLUMN

207 STEEL JOISTS AT STUD WALL